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Note 

Chebyshev Expansion Methods for the 
Solution of Elliptic Partial Differential Equations 

In a recent paper, Haidvogel and Zang (J. Comput. Phys. 30 (1979) 167) described a 
method, based on an expansion in Chebyshev polynomials, for the solution of Poisson’s 
equation in a rectangle. They also indicated how the method might be extended to more 
general equations. In this note, we give a comparison of the method with the global element 
method (Delves and Hall, J. Insf. Math. Appl. 23 (1979), 223), and give numerical results for 
those problems treated by Haidvogel and Zang. 

1. THE METHOD OF HAIDVOGEL AND ZANG 

In a recent paper [ 11, hereafter referred to as HZ, Haidvogel and Zang advocated 
the use of methods based on expansions in Chebyshev polynomials, for the accurate 
solution of elliptic partial differential equations, and gave a detailed description of 
one such algorithm for the solution of Poisson’s equation in a square: 

v* w, Y) = f(x, Y>, -l<X,Y<l, (1) 

subject to homogeneous boundary conditions 

w, Y> = 0, 1x1= 1 or 1 yl= 1. (2) 

The method they described involves the expansion of both U and f as truncated 
double Chebyshev series: 

U(x,y)zUu,(x,y)= f f am, Tn (x) Tm (~1, nzo m=o 

j-(x, y) z c + .f,mT,, (xl T,(Y). n=tJ he0 

Approximate values for the coefficients f,,, can be computed numerically using fast 
Fourier transform techniques. Applying the Laplace operator to the expansion for U, 
and equating coefficients of T,, T,,, in (1) and (2), yields an (N + 1) x (N + 1) square 
set of algebraic equations for an,,, in terms of the f,,, and HZ describe efficient 
methods of solution of these defining equations. They also comment that the method 
extends readily to handle both inhomogeneous boundary conditions, and the 
Helmholtz equation 

v2u+mJ= f(x, y), 
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R constant, (4) 
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and indicate further how the method might be extended to handle problems of the 
form 

V .a(x, y)VU=f. (5) 

The chief interest in such methods lies in the very rapid convergence which can be 
obtained for smooth problems. Provided that the exact solution U(x, y) is infinitely 
differentiable on the closed domain -1 < x, y < 1, exponentially fast convergence can 
be expected; that is, the error norm ]/ U, - U]] will reduce at the rate 

C a positive constant, 0 < a < 1. (6) 

This compares with an expected behaviour for a finite difference method of order p 
and a rectangular mesh of N X N points of 

/I lJ, - UI( z C’N-“. (7) 

For large N, (6) represents very much more rapid convergence than (7) for any finite 
p. That this rapid convergence is indeed attained in practice is shown by the results of 
example 1 of HZ ; see also below. Unfortunately, singularities of various types occur 
very commonly in the solution of elliptic partial differential equations; when they 
occur, the exponential convergence form (6) is lost and the convergence rate achieved 
by the HZ algorithm reduces to the power form (7), the value of p depending on the 
severity of the singularity. This is demonstrated by the second and third examples 
given in HZ. The second example has a solution with a “mildly non-analytic” 
behaviour near the corners of the square, leading to a convergence rate of the form 
(7) with p z 6; the third example involves an interface problem for which f(x. y) is 
discontinuous, and leads to convergence of the form (7) with p z 2; for this last 
example, the method of HZ converges no faster than a standard five-point finite 
difference method. These examples are considered further below. 

The failure to provide a mechanism for treating singularities drastically limits the 
applicability of a straightforward Chebyshev method such as that of HZ. Further, 
HZ give no mechanism for treating other than rectangular domains (although such 
global expansion methods can be extended : see [ 6, 71). 

2. THE GLOBAL ELEMENT METHOD 

The global element method [2] is also an expansion method based primarily on 
orthogonal polynomials. It is, however, rather more general than that of HZ, being 
designed to handle the variable coefficient second order self-adjoint equation 
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with a variety of homogeneous or inhomogeneous boundary conditions, on a general 
curvilinear region R. An extension to non-self-adjoint problems is given in [8]. 
Briefly, the method proceeds as follows: 

(i) The problem region is divided into a small number it4 of sub-regions 
(“global elements”); in the rth element an expansion of the form 

qx, y) z UJX, y) = 2 ajr)hj’)(x, Y) 
i= I 

(9) 

is taken for the solution U (x, y). 
(ii) Problem (8) is viewed as a set of M coupled problems; coupling between 

elements being via continuity conditions which must be satisfied across element boun- 
daries. 

(iii) The coefficients aj” are determined as the stationary point of a variational 
functional; see [2] for details. The functional used treats both differential equation 
and boundary conditions on an equal footing, and does not impose any subsidiary 
conditions (other than regularity conditions) on the approximate solution. Hence both 
differential equation and all boundary conditions, including Dirichlet conditions, are 
automatically satisfied approximately. Further, since the interface conditions are 
treated as boundary conditions, these too are satisfied approximately; thus, in 
particular, the approximate solution is not continuous across element boundaries (i.e., 
it is “nonconforming”), although it is “approximately continuous.” 

The defining equations for the coefficients aj” involve integrals over the subregions 
used; in two dimensions, with a polynomial basis of degree N- 1 and M elements, 
an MN’ x MN2 matrix results which is block-sparse (blocks corresponding to non- 
adjacent elements are empty). Non-empty blocks are in general full; and the diagonal 
blocks involve the accumulation of MN* double integrals. The economics of the 
scheme do not therefore appear promising at first sight. However, for the range of 
problems covered by HZ (rectangular region; Laplace operator) and with a 
polynomial basis, all of the integrals can be performed analytically. More generally, 
an efftcient implementation, which avoids the direct numerical evaluation of integrals 
and takes account of the structure of the equations during their solution, was given in 
13 I. This implementation has the following features: 

(iv) Each element is mapped onto the square I-1, 1 ] x [- 1, 1 ] using a 
“blending function” map 151. In the mapped coordinates (s, t), the solution within an 
element is taken to have the form of a modified Chebyshev expansion, 

UN&f)= T 2 aijhi (s) hj (t>9 
i=l j=l 

(10) 



where 

h,(s)= 1 
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; h,(s)=s; hi(s)= (1 -s’) Ti_ .2(s), i 2 2. 
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The particular form of (10) is chosen for computational efficiency (see [3]), and the 
user sees only a standard Chebyshev expansion: 

It is shown in [3] that the choice (10) allows the defining equations to be set up 
directly from Chebyshev expansions of the coefficients Aij(x, v), B(x, y), f(x, y) in 
(8); these expansions are computed numerically in the mapped coordinates (s, t), 
using FFT techniques. This indirect approach reduces the cost of setting up the 
defining equations to 4 (MN4); an iterative scheme for solving these equations is also 
given in [ 3 1, with an operation cost which is also 0 (MiV4). 

The global element method has a number of similarities with the method of HZ. 
However, it also has a number of differences, of which the two most important are its 
treatment of the region, and of singularities: 

(a) Region 

The method of HZ produces the solution as a single Chebyshev expansion over the 
whole problem domain. Even when the solution is analytic over this region, it is 
simple to display problems for which a large number of terms are required to provide 
an initial representation of the solution, even though eventually convergence is very 
rapid [a simple one-dimensional example of such a problem is one with solution enx 
on the domain [-1, 1 ] ; for large a a very high degree polynomial is required to 
represent this function, even though eventually convergence is exponentially fast]. 

In such cases, it can be more efficient to split the region into two or more 
subregions, and use a separate expansion on each; the global element method allows 
naturally for this. The blending function maps used do not introduce extraneous 
singularities into the equations (provided that the subregions have no cusps, that is, 
corners with zero corner angle), and have the advantages of being explicit, and of 
treating curved sides exactly. Subregions with three and four sides are covered by the 
implementation described in [ 3 ]. 

(b) Treatment of Singularities 

Two types of singularities are common in practice: 

(i) Line singularities : one or more of the coefficients in the differential 
equation is discontinuous across a given line in the region R. Such discontinuities 
typically arise, for example, at the interface between two regions with different 
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physical properties. They are treated in the global element method merely by making 
the line of discontinuity a subregion boundary; see example 3 below. 

(ii) Point singularities: the solution exhibits some non-analytic behaviour at a 
point or points in the domain. These are treated by isolating the point of singularity 
within a subregion, and constructing a singular map for this subregion chosen so that 
the solution is smooth when expressed in terms of the mapped variable. For an 
example of such a calculation, see (41. 

3. COMPARISON OF THE METHODS 

Although the approximating equations for the two methods are constructed 
differently, those for the global element being constructed directly from a variation 
principle, the method of HZ should yield similar accuracy for a given value of N to 
that given by a single-element global element calculation. However, in addition to its 
ability to handle curved boundaries and the general equation (8), the ability to 
subdivide the region, and to give a direct treatment of interface problems and of point 
singularities, can be expected to be of advantage in many cases. We illustrate this by 
presenting the global element solution of the three examples used by Haidvogel and 
Zang to illustrate their method. The region for each of these examples is the square 
R : -1 Q X, y < 1, and the boundary conditions are homogeneous (U(x, y) = 0 on the 
boundary). We present results obtained by a subdivision of this region into four unit 
squares by the x and y axes, together with a linear map of each subregion onto the 
“standard” square [il, 1 ] x [-1, 11. Within each element a polynomial solution of 
degree N - 1 is constructed, giving a total of 4N2 unknown coefficients; we therefore 
compare the accuracy achieved with that obtained by HZ with a polynomial solution 
of degree 2N, giving a total of (2N + 1)’ unknown coefficients, and for the case in 
which their equation solver is iterated to convergence. 

For the global element method we report both the maximum observed error, and 
the error estimate returned by the program. The error estimate is based on an 
analysis of the convergence of the computed Chebyshev expansion, and a similar 
estimate could be provided within the method of HZ. 

The program used, GEM 2, is still at an early stage of development, and has a 
number of limitations. The most serious is that it does not yet implement the iterative 
solution scheme of [3], but uses instead a block Gauss elimination scheme. The 
resulting storage requirements limit the maximum degree approximations which can 
be handled to those shown in the examples below; the paper by HZ gives extended 
results for larger values of N, and these are shown here for completeness. The 
program GEM2 is also still rather slow, and we do not attempt here to compare 
solution times with those given by HZ; these times would in any case have little 
relevance, since the technique of HZ is optimised for the Laplace operator and square 
region of these examples, and a similarly optimised global element procedure should 
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therefore be provided if meaningful speed comparisons are to be made. Rather, we are 
concerned here with demonstrating that the facility to subdivide the given region can 
yield substantially more rapid convergence than the global approach of HZ. 

PROBLEM 1. 

V2 U = - 32~~~ sin 4nx sin 47ty. 

TABLE I 

Computed Results for Problem 1, for the Global Element Method Using 
Four Elements and an Approximation of Degree N - 1, and for the Method 
of HZ [ 11 Using an Approximation of Degree 2N. 

Global element HZ 

N Max. error Est. error 

6 4.8 x 10-l 2.3 x 10-l 
7 1.5, -1 8.7, -2 
8 1.1, -2 7.7, -3 3.3, -2 
9 7.1, -3 3.9, -3 

10 9.3, -5 8.6, -5 
12 4.5, -7 4.9, -7 6.9, -6 
16 4.8, -11 
24 1.9, -12 
32 8.7, -13 

TABLE II 

Global element 
HZ 

N Max. error Est. error Max. error 

3 
4 
5 
6 
I 
8 
9 

10 
12 
16 
32 
64 

8.6 x 10-j 
1.6, -3 
3.5, -4 
7.8, -5 
7.4, -6 
7.2, -6 
3.4, -6 
8.9, -7 
2.9, -1 

1.8 x 10-l 
9.8, -3 
1.7, -3 
2.1, -4 
6.4, -5 
2.3, -5 3.5 x 10-j 
1.0, -5 
4.8, -6 
1.3, -6 

2.2, -6 
1.4, -7 
8.7, -9 

(12) 
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Exact solution: 

U(x, y) = sin 471x sin 47ry. 

The inhomogeneous term in this equation is analytic in R, and so is the solution. 
Both methods are therefore expected to converge exponentially fast. There might, 
however, still be an advantage in subdividing the region, to pick up the structure 
(oscillations) in the right hand side of (12). The results obtained are shown in 
Table I. Both methods converge very rapidly, as expected; there appears to be a 
minor, unimportant advantage in subdividing the region, for this problem. 

PROBLEM 2. V’U=l. 

Exact solution: U(x, y) = U(y, x) 

Cm I)/2 

=- $(l-Y2)+$ c [ my+,-mn) 
rn=l 

m odd 

x cos+l7zye -mn(l-/xl)/2(1 +e-mnlxl 
(13) 

The coefficients in this equation are again analytic, but the solution exhibits a mild 
non-analyticity near the corner of the square, approaching zero as r2 In r, where r is 
the distance from a corner. The convergence achieved by the method of HZ is 
therefore algebraic rather than exponential. The global element solution presented 
here makes no attempt to map away this singularity, and hence is expected also to 
converge only algebraically. The results obtained are given in Table II. Those for the 
GEM show an odd-even effect in N, reflecting the even symmetry of the solution 
about the lines x = 0, y = 0. Allowing for this feature, a fit to the results indicates 
that the convergence is quite well modelled by (7), with parameters 

p=4 (HZ), 

p=8 (GEM). 

This higher rate of convergence obtained using the GEM shows very clearly in the 
results, but is a little surprising. It may possibly stem from the difference between the 
variational formalism used in the GEM, and the more straightforward truncation of 
the infinite equations used in HZ ; or it may only imply that the values of N used are 
not large enough for the asymptotic formula (7) to be valid. However, it is clear from 
the rapid convergence achieved that solutions of a given accuracy can be obtained 
using fewer unknowns with the GEM formalism with a subdivision of the region, than 
by the whole region expansions of HZ. 
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TABLE III 

Global element HZ 

N 

3 2.5 x 1O-8 4.7 x 1om2 
4 5.1, -10 1.6, -10 
5 2.0, -10 2.6, -11 
8 5.2 x IO-’ 

16 1.3, -4 
32 3.0, -5 
64 7.4, -6 

Max. error Est. error 

PROBLEM 3. 
v* u = H(x) v(y) + H(y) v(x). (14) 

H(x) = 0, x < 0, 
I = 2, x = 0, 

= 1, x> 1, 

u(x) = - $ (x + l), x < 0, 
4X2-~X-~, x > 0. 

Exact solution: U(x, y) = U(X) u(y). 
This example gives a simple model of an interface problem, the interfaces lying 

along the lines x = 0, y = 0. The exact solution has discontinuous second derivatives 
across these lines, and this results in slow convergence for the method of HZ. The 
GEM, however, finds no difficulty, since the interfaces lie on element boundaries. As 
shown in Table III, the GEM obtains essentially machine accuracy (10-l 1 decimal 
digits) with N > 4 ; and this small error is reflected in the error estimates returned by 
the programme. For this simple problem, the finite difference methods tested for 
comparison by HZ would also obtain essentially machine accuracy, provided that the 
interfaces were made grid lines for the mesh used. This was explicitly avoided by HZ, 
since for more realistic problems, with curved interfaces, it is difficult to achieve 
within a finite difference framework. However, the GEM has no such difficulty, and 
indeed the accurate treatment of interface problems was one of its design aims. 

4. CONCLUSIONS 

The results presented strengthen the conclusion of HZ that Chebyshev expansion 
methods are attractive for the accurate solution of elliptic problems. They also 
suggest that there is considerable advantage to be gained, in flexibility and accuracy, 
by allowing for a subdivision of the region. 
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